The Brain Simulation Platform "Live Papers" 
Authors: Lupascu CA^{1}, Morabito A^{2}, Ruggeri F^{2}, Parisi C^{2}, Pimpinella D^{2}, Pizzarelli R^{2}, Meli G^{2}, Marinelli S^{2}, Cherubini E^{2}, Cattaneo A^{2}, and Migliore M^{1}
Author information: ^{1}Institute of Biophysics, National Research Council, Palermo, Italy, ^{2 }European Brain Research Institute, Rome, Italy.
Corresponding author: Author (Lupascu CA carmen.lupascu@pa.ibf.cnr.it )
Journal: Frontiers in Cellular Neuroscience
Download Url: https://www.frontiersin.org/articles/10.3389/fncel.2020.00173/abstract
Citation: Lupascu CA, Morabito A, Ruggeri F, Parisi C, Pimpinella D, Pizzarelli R, Meli G, Marinelli S, Cherubini E, Cattaneo A & Migliore M (2020). Computational modeling of inhibitory transsynaptic signaling in hippocampal and cortical neurons expressing intrabodies against gephyrin. Frontiers in Celllular Neuroscience, In press.
Licence: the Creative Commons Attribution (CC BY) license applies for all files. Under this Open Access license anyone may copy, distribute, or reuse the files as long as the authors and the original source are properly cited.A reduced selfconsistent set of files needed to reproduce the fittings in the paper is available on ModelDB. The kinetic model of synaptic transmission used in the paper is schematically illustrated below (Figure 1 of the paper):
We modeled the action of the variables GEPH(gephyrin clusters), NLG2 (Neuroligin/Neurexin clusters), N (Neurotransmitter molecules), and Ry (Postsynaptic receptors) through the following equations: $$\frac{dN}{dt} = \beta \cdot \alpha_{f} \cdot g(t) \cdot NLG2  \alpha_{b} \cdot N$$ $$\frac{dNLG2}{dt} = \frac{GEPH}{1+\frac{GEPH}{2 \cdot NLG2}}\phi \cdot NLG2$$ $$\frac{dR_{y}}{dt} = h \cdot GEPH  h_{1} \cdot R_{y}$$ after a synaptic activation, g(t) generates a number of neurotransmitter molecules, N, at a rate \(β\). The synaptic current was calculated as: $$I_{GABAA} = c_{1} \cdot N \cdot R_{y} \cdot (ve_{rev})$$ where \(c_{1}\) is a constant, v the membrane potential and \(e_{rev}\) the reversal potential. The set of differential equation can be solved analytically. The current \(I_{GABAA}\) can be described as: $$I_{GABAA} = I_{FACT} \cdot \frac{[(1\alpha_{b}\tau_{d})(1\alpha_{b}\tau_{r})] \cdot e^{\alpha_{b}\cdot t}+(1\alpha_{b}\tau_{r}) \cdot e^{\frac{t}{\tau_d}}(1\alpha_{b}\tau_{d}) \cdot e^{\frac{t}{\tau_{r}}}}{(1\alpha_{b}\tau_{d})(1\alpha_{b}\tau_{r})} \cdot (ve_{GABAA})$$ where $$I_{FACT} = c_{1} \cdot \frac{h}{h_{1}} \cdot [\frac{(2\phi)\cdot GEPH^{2}}{2\cdot\phi}] \cdot \beta \cdot \alpha_{f} \cdot w$$


\(h\) 

\(τ_{r}\) 

\(h_{1}\) 

\(φ\) 

\(α_{f}\) 

\(GEPH\) 

\(α_{b}\) 

\(w\) 

\(β\) 

\(v\) 

\(τ_{d}\) 

\(e\) 





